

Corporate Standards Strategy Team

Open Source Versus Open Standards:

Contrasting Concepts and the ‘Interop’ Impact
January 15, 2003
A great deal of confusion, both within the software industry and among consumers of software, surrounds the terms “open source” and “open standards,” and the concepts, policies and licensing implications these terms represent. At the outset, there is disagreement as to the meanings of the terms themselves. This problem is compounded by liberal use and widespread misuse, both unwitting and deliberate, that cloud the conceptual framework and frustrate efforts to formalize the vocabulary. With the terminology so difficult to pin down, it has become all too common to find the label “open source” improperly linked to, or confused with, the very different notion of “open standards.”

Open standards exist to enable interoperability in a marketplace of multiple competing implementations while ensuring certain minimum requirements are met. An open standard is unrelated to the development model used for the implementation of that standard. In the software development model, it is equally possible for an open standard to be implemented in a proprietary software package or in an open source software package. It also true that software development need not be standards based at all and much open source software is not. In a narrower sense, an open standard is a specification or technology recipe, whereas “open source software” is the software code that may or may not implement an open standard. In other words, the open source software implementation of an open standard is the cake that results from following the recipe.

This document strives to infuse clarity in defining and distinguishing these two concepts. Then, with the terms defined, it will analyze the relationship between open-source software and the open-standards process, and examine the extent to which they are compatible, the extent to which they conflict, and their respective effects on software and hardware interoperability.

Open Standards

The term “standard” can take on an array of meanings in various contexts. The International Organization for Standards (ISO) gives the following definition: “A standard is a document, established by consensus that provides rules, guidelines or characteristics for activities or their results.” Standards come in many forms from technical specifications, safety procedures manufacturing processes and accessibility requirements to name a few. Stated most simply for the purposes of this discussion, however, a standard is a technical specification that is intended for widespread industry adoption, or that already has achieved that status. A second defining characteristic of a standard is its ability to facilitate interoperability among different products or services. Open standards exist to enable this interoperability in a marketplace of multiple competing implementations while ensuring certain minimum requirements are met. An open standard is unrelated to the development model used for the implementation of that standard. For example the ISO standard on metric screw threads dictates the dimensions of a 2mm thread size, not how the screw is actually constructed or with what materials.

The concept of standards is ancient. The most basic development of a modern economic system requires the establishment of standard systems of weight, measure, time and currency. As a society becomes more technologically complex and mature, for efficiency reasons, it necessarily relies on a larger array of increasingly complex specifications and it formalizes procedures for adopting new standards. Standards act as a benchmark or point of reference against which multiple competing implementations can be judged to make sure that certain fundamental requirements are met. Because standards facilitate interoperability among technologies manufactured by different vendors in the world of computers and electronics, they are widely perceived as effective and efficient means of promoting commerce and innovation.

There are several ways to describe and categorize standards. One type of classification distinguishes whether a standard is proprietary (developed under the direction of one or more private entities) or open (developed through collaboration and consensus in an open process or forum). Technology vendors develop proprietary standards to enable business partners, customers and other interested parties to build products or services that interoperate with the vendors’ products or services. Such standards are deemed “proprietary” because they are geared specifically to vendors’ proprietary products and services, rather than pursuing universal or cross-product interoperability.

Open, consensus-driven standards, by contrast, are product-independent. In other words, open standards are not tied to the products or services of any particular vendor, and the licensing terms governing them do not restrict implementation to particular hardware or software products. Unfortunately, the label “open standards” frequently is used imprecisely in marketing surrounding certain products and services. Arguably, the term lacks formal definition, but for the purpose of this discussion, an open standard is a technical specification developed and maintained by collaboration or consensus and offered to implementers under terms that permit them to develop their own products and services that interoperate with all other implementations of that specification.

Open Source

The term “open-source software” (OSS) can be confusing, because it is used in a variety of contexts to refer to any (or a combination) of four interrelated concepts: the OSS development model, OSS philosophies, OSS licensing regimes, and OSS business models. The licensing and distribution models are the characteristics that distinguish OSS from commercial software in the context of standards compliance (discussed below). The other concepts, although independent, relate to and help define the OSS licensing and distribution models. These four concepts taken together help define what is known as the OSS community or movement.

OSS is an alternative to the traditional commercial software model where software is developed and funded by a commercial enterprise and distributed and licensed for the purpose of creating a sustainable return on its R&D investment through licenses of the software itself. In contrast to the business objectives that characterize the commercial model, OSS development is often motivated by the need to solve a particular software problem faced by IT experts or applications developers in the industry more generally. Consequently, OSS developers across institutional boundaries donate their time typically without funding or additional compensation to solve the particular problem. Because the software was created through this community process, the software that is produced to solve the particular problem is freely shared and may be used by anyone. However, there are varying degrees of freedom adopted by the OSS community. There is no single or unified OSS philosophy. In fact, there is a great deal of disagreement within the community itself over the licensing terms controlling the distribution and use of OSS. The two most fundamental and often rival OSS schools of thought can be characterized loosely as:

· Ideological: Believes that all software (both source and object code) should be available at no cost to anyone, because no one should commercialize any software. Intellectual Property Rights in the software code developed through the OSS development process are leveraged to make sure that neither OSS nor— as far as possible— any software is commercialized.

· Pragmatic: Supports the co-existence of commercial software and OSS but believes that OSS is a superior development model that can serve as the basis of a healthy software industry.

As a result of these different philosophies, OSS is distributed under a diverse array of licenses. The Free Software Foundation (FSF), author and originator of the GNU General Public License (GPL) under which the most popular OSS product Linux is distributed, could be seen to represent the ideological camp; whereas the more pragmatic, Open Source Initiative (OSI) maintains a diverse list of recognized licenses (including the GPL). These licenses vary considerably as to specific terms, even key terms, but the vast majority of open-source licenses conform to the definition provided by the OSI. Of the nine essential OSI criteria, three are relevant to this discussion. In summary, every open-source license:

· requires that the source code be made available to the public;

· permits anyone to redistribute the source code without restriction; and

· permits anyone to modify the code and to freely redistribute the modified code.

Within these broad parameters, however, OSS licenses differ widely with regard to the nature and degree of restrictions they impose on licensees. Some OSS licenses are extremely permissive, like the Berkeley Software Distribution (BSD) license which is a simple, permissive, free software license whose only restriction is copyright attribution and license reproduction; others are moderately restrictive, for example the Apple Public Source License (APSL) or the Mozilla Public License (MPL) which require that specific files that contain APSL/MPL code be distributed in source code form and under the terms of the APSL/MPL (although other files that do not contain APSL/MPL code that are contained in a larger work may be released under any license); and still others are highly restrictive as the afore mentioned GNU GPL which requires that any work that includes GPL code be released under the terms of the GPL.

Distinguishing Open Source Software and Open Standards

It is not difficult to dispel the confusion surrounding open source software and open standards, and to distinguish these two very different terms. In the broadest sense, “open standard” describes the result of a process for establishing uniform technical specifications. “Open source,” by contrast, refers to implementation, i.e. a particular software development, licensing and distribution model. It is clear that we cannot equate “source code availability” with “open standards”. The open-standards process is neutral with regard to software development, welcoming all and favoring none in its quest for the best interoperability solution.

OSS developers are like commercial developers in that they may choose to implement, or not to implement, particular standards in software code they produce. There are, to be certain, many OSS implementations of open standards, but they are open-source independently of being standards-based or standards-compliant. There is no inherent connection between the model under which particular software is developed, licensed and distributed, and the fact that the software does or does not conform to a particular open standard. Claims that “open source” and “open standards” are one and the same are clearly mistaken as are justifications such as the Internet and the World Wide Web being cited as “proof” that they are. The two concepts are not the same and should be separated. The Internet and the World Wide Web were the result of the efforts of government and academic institutions, for-profit corporations and individuals who developed the standards on which the Internet is based (e.g. IP, TCP, DNS, PPP, HTTP, SMTP, POP, etc.) through standards development organizations like the IETF and W3C. Many implementations of these technologies exist in both the commercial and open source development models.

The other critical difference is the issue of consensus. Open standards are established through consensus-based processes. The main function of an independent standards body is to provide the forum in which consensus can be reached on specific issues. They have rules about participation, construction, adoption and amendment. Furthermore they establish processes for how meetings are carried out in order to promote fairness of discourse and prevent anti-competitive practices. The fact that a technical specification is implemented in open source does not establish consensus and does not make this technology a standard. In fact open source software development entirely lacks formal rules and documented conventions. Each project has its own unique cultural identity, often with a tight inner circle or self-appointed project executive controlling the final outcome. While this may be an important factor in the evolution of an open source project, it clearly separates open source from the consensus-based open standards process.
Interoperability

Open-source proponents frequently assert that the universal accessibility of OSS code necessarily promotes interoperability. To be sure, anyone may implement a standard and distribute it under an OSS license that does not restrict such distribution and, like any other standards-compliant implementations including commercial ones, this does tend to foster interoperability. Several OSS characteristics, however, weigh against a conclusion that OSS is intrinsically more compatible with open standards or particularly conducive to interoperability. For example, there are several open standards (MPEG, GSM and 3GPP specifications, MHP and IEEE 1394, to name a few) that may be implemented and distributed under conventional commercial software licenses but in many cases cannot be implemented and distributed as open source software given some of the restrictions found in many OSS licenses.
Open standards and OSS are tailored toward different ends. The fundamental purpose of any standard is to promote interoperability. In the case of open standards, the aim is interoperability across diverse hardware and software products and services sparking competition and innovation among vendors seeking to differentiate their implementations. The principal philosophical objective of OSS, by contrast, is to ensure that software users are free to modify and redistribute source code. Because all OSS may be freely modified, any OSS product that initially is standards-compliant may be altered by any user in a manner that renders it noncompliant, and perhaps incompatible with other users’ versions of the software. The freedom to modify code necessarily includes the freedom to undermine its interoperability.

An additional consideration, which raises several issues, is the motivation of the developer to comply with standards. Commercial software developers (CSDs) rely principally on the sale of software licenses for revenue. The extent to which a software product interoperates with various hardware products and other vendors’ software can affect customer demand for a software product. CSDs, therefore, often have a direct and overwhelming incentive to pursue interoperability by implementing standards in their products. Consequently, CSDs devote substantial resources to the development of software that is standards-compliant and interoperable.

Some commercial enterprises promote the use of OSS as part of their business, for although they do not draw revenue from the licensing of OSS software products, they seek to derive ancillary revenue from support services, hardware, documentation and non-OSS software products related to their core OSS offerings. They have an interest, therefore, in interoperability of their OSS offerings. At best this incentive would make OSS code promoted by this subset of commercial enterprises as standards-compliant as its commercial counterparts. But because these commercial enterprises are often not investing in or managing the development of the OSS implementation they consequently have little ability to influence the development of OSS code that will be interoperable with other standards–conformant products.
This raises the related matter of responsibility for source code, or “ownership.” A CSD owns the code it develops, and its reputation with customers depends on the performance and interoperability of its code. Therefore, a CSD expends significant resources testing the performance and interoperability of its code. OSS code, conversely, is assembled from potentially thousands of non-related contributions (built in any range of uncontrolled to tightly managed environments) and it is more difficult to verify and test each of them for standards compliance or their effects on interoperability. Giving the user freedom to adapt the code for any task at hand, OSS shifts ownership, and thus responsibility for interoperability, from vendor to user. The overwhelming share of users, however, lacks requisite expertise and resources to customize software to make it interoperable with other products. And any customer modification may render the software incompatible with other versions of the same software. This is particularly problematic for software designed to interact via the Internet.

For an OSS implementation of an open standard there are several potential complications. Conformance testing is an issue for OSS given the lack of code ownership and the lack of a clear entity to certify the OSS implementation for all potential users. Any downstream change made to the code could invalidate existing test certificates. These tests are expensive and it would be unrealistic to perform tests each time a change was made. The issue is compounded through time and the version changes of a standard definition. Given that open standards are developed and maintained as a continuing process, the evolution of a standard (either new features or bug fixes) is controlled by the standards body and must be reflected in compliant product implementations. Since there is typically no tangible transaction between the OSS developer and all of its potential end users there is no uniform way for the OSS developer to upgrade existing deployments to the next version of the standard. Individual customers or end users may be able to move quickly to latest versions, but the burden of staying current is entirely on them. Interoperability testing against a reference implementation or with other vendor’s products faces similar issues and is also a substantial undertaking. Guarantees of interoperability would not survive a change to the OSS code previously tested.

Interoperability is the hallmark of every successful open standard. If products that implement a standard prove to be less than sufficiently interoperable, they will be rejected in the market and the standard will fail to attain industry acceptance. For all the reasons cited here, OSS may erode vendors’ ability to maintain interoperability among compliant implementations of standards. Hence, rather than being especially conducive to open standards and interoperability, OSS can rather easily be at odds with them and lacks a means of accountability in the market place.

Conclusion

Clearly, the blurring of distinctions between OSS and open standards, be it inadvertent or intentional, is confusing. Fortunately, misconceptions surrounding these terms are easily dispelled. Once these two concepts are illuminated, it becomes evident that they are not merely dissimilar, but in at least some respects contradictory.

Microsoft Corporation
1
OSS vs OpenStds Final.doc

